Abstract BACKGROUND:
Warm ischemia jeopardizes graft quality and recipient survival in donation after cardiac death (DCD) transplantation. Currently, there is no system to objectively evaluate the liver quality from DCD. The present study tried to use energy metabolites to evaluate the donor liver quality.
METHODS:
We divided 195 Sprague-Dawley rats into five groups: the control (n=39), warm ischemic time (WIT) 15?min (n=39), WIT 30?min (n=39), WIT 45?min (n=39), and WIT 60min (n=39) groups. Three rats from each group were randomly selected for pretransplant histologic evaluation of warm ischemia-related damage. The remaining 36 rats were randomly divided into donors and recipients of 18 liver transplantations, and were subjected to postoperative liver function and survival analyses. Between cardiac arrest and cold storage, liver energy metabolites including glucose, lactate, pyruvate, and glycerol were measured by microdialysis. The lactate to pyruvate ratio (LPR) was calculated.
RESULTS:
The changes in preoperative pathology with warm ischemia were inconspicuous, but the trends in postoperative pathology and aminotransferase levels were consistent with preoperative energy metabolite measurements. The 30-day survival rates of the control and WIT 15, 30, 45, and 60min groups were 100%, 81.82%, 76.92%, 58.33%, and 25.00%, respectively. The areas under the receiver operating characteristic curves of glucose, lactate, glycerol, and LPR were 0.87, 0.88, 0.88, and 0.92, respectively.
CONCLUSION:
Glucose, lactate, glycerol, and LPR are predictors of graft quality and survival outcomes in DCD transplantation.
|